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A mean field theory of the effect of knots on the statistical mechanics of ring polymers is presented. We
introduce a topological invariant which is related to the primitive path in the ‘‘polymer in the lattice of
obstacles’’ model and use it to estimate the entropic contribution to the free energy of a nonphantom ring
polymer. The theory predicts that the volume of the maximally knotted ring polymer is independent of solvent
quality and that the presence of knots suppresses both the swelling of the ring in a good solvent and its collapse
in a poor solvent. The probability distribution of the degree of knotting is estimated and it is shown that the
most probable degree of knotting upon random closure of the chain grows dramatically with chain compres-
sion. The theory also predicts some unexpected phenomena such as ‘‘knot segregation’’ in a swollen polymer
ring, when the bulk of the ring expels all the entanglements and swells freely, with all the knots concentrated
in a relatively small and compact part of the polymer.@S1063-651X~96!10012-X#

PACS number~s!: 61.41.1e

Modern polymer physics is based on the analogy between
a polymer chain and a random walk. While this analogy has
been extremely fruitful in predicting the long-wavelength
static and dynamic properties of polymer chains~radius of
gyration, relaxation time, etc.!, it misses one of the most
important attributes of polymer chains, namely, their ability
to form permanent entanglements, i.e., knots. Although there
is a very successful phenomenological theory~the reptation
model @1#! of the effect of temporary entanglements on the
dynamics of polymers which give rise to the viscoelasticity
of polymer liquids, there is no comparable theory of perma-
nent entanglements which play an important role in biologi-
cal systems~e.g., DNA rings in bacteria!. Our understanding
of the latter is limited by the fact that, despite the progress in
the mathematical theory of classification of knots and topo-
logical invariants@2#, there are only few rigorous results on
the entropic properties of knots@3,4#, and further attempts in
this direction encounter severe mathematical difficulties@5#.
Computer simulations@6–8#, however insightful, have some
basic limitations.

What appears to be missing in the area of polymer topol-
ogy is a simple ‘‘physical’’ model which could give some
testable physical predictions. The main purpose of the
present work is to trade mathematical sophistication for the
simplicity and effectiveness of such a physical approach and
to formulate a model that goes along the lines of the simple
Flory mean field theory of linear polymers and takes into
account topological constraints, albeit in a very primitive and
incomplete manner.

It is also worth mentioning what we donot attempt to
accomplish here: as we pursue a scaling-type approach, we
cannot capture the subtle differences between simple knots,
such as, for instance, trivial knot, trefoil, figure eight, etc.;
we only hope to be able to describe general tendencies for

very complex knots. As far as biological applications involv-
ing DNA molecules are concerned, our model does not apply
to current experiments on rather small DNA rings@9,10#
such as plasmids, but may be relevant to very large circular
DNA ~e.g., that of bacteria!. We also stress that we are
speaking of topological constraints on the dsDNA as an en-
tire thread, and do not have in mind linking of the two
strands in the duplex, that is related to biologically important
issue of superhelicity@11#.

We address two questions:~1! What is the equilibrium
size of a polymer ring, depending on both solvent character-
istics ~or monomer interactions! and knot topology? A simi-
lar question for linear polymers, where topology is not an
issue, is discussed in every textbook on polymer physics, and
it is known that the Flory theory yields a very good approxi-
mation for both swelling in good solvent and collapse in
poor solvent. Clearly, almost the same behavior, except for
some subtle chain end-related effects, is expected for aphan-
tom ring polymer ~which can cross itself!. Our goal is to
consider anonphantom ring, with quenched knot topology.

~2! What is the probability distribution of various knots
obtained upon random closure of a linear polymer, or by
random motion of aphantomring with annealed topology?

As we wish to build up a simple theory, we do not attempt
to characterize knots by sophisticated polynomial invariants.
Instead, we introduce the following construction. Consider a
polymer chain in some spatial conformation and denote by
L the contour length of the chain. Let us first construct a tube
that contains the polymer chain and is sufficiently narrow
such that the topology of the tube as a whole is the same as
that of the polymer. We now inflate the tube such that its
lengthL is preserved, while its cross section is roughly the
same everywhere along the tube~we assume that different
tube portions cannot penetrate each other!. This inflation will
eventually end when the inflated tube fills the main part of
the volume within its loops. Let us denote byD the diameter
of the tube in this maximally inflated state. We state that the
aspect ratio of the maximally inflated tube
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p[L/D ~1!

is a topological invariant. It is a weak invariant since there
may be many topologically different knots that have the
same value ofp @12#. Nevertheless,p is a topological invari-
ant, in the sense that if we take two closed curves in three-
dimensional space that are geometrically different but iden-
tical with regard to their topology, then tube inflation, as
described above and as illustrated in Fig. 1, will work inde-
pendently of initial geometries and will result in identical
~‘‘maximally inflated’’! geometrical shapes of the corre-
sponding tubes and, therefore, will yield identicalp values.
This happens because the redistribution of the ‘‘stored’’
length among the loops is unrestricted in this single linear
chain problem and thus, inflation does not encounter spin-
glass-type frustrations and leads to some well defined opti-
mum @13#. A closely related definition of a topological in-
variant was introduced in Ref.@14#, in the context of vortex
tubes in fluid mechanics.

If the ring is not knotted in the conventional sense, or if it
forms the trivial knot, its inflation leads to a simple torus
shape withD;L and thusp.1. On the other hand, the more
complex knot we have, the less is its ‘‘inflation capability.’’
Physically, since real polymers have a finite thickness, there
is a maximal knot complexity that can be achieved which
corresponds to a knot that is so dense that any inflation over
an already existing diameter would be impossible. If we
imagine a polymer chain made of monomers whose length is
equal to their thickness, we conclude that the maximal value

of p5L/D.N is of the order the number of monomers per
polymer chain. Thus, our topological invariant can take val-
ues in the interval

1<p<N ~2!

and it provides a rough measure of knot complexity: more
complex knots correspond generally to higherp values. To
illustrate the later conjecture, it is worth mentioning that the
topological invariantp has the property of additivity: for the
composite knot, whose components have topological invari-
antsp1 andp2, the topological invariant is given by

p.p11p2 . ~3!

We note that the topological invariantp is closely related
to the primitive path of the chain in a lattice of obstacles@1#.
In order to clarify this point we introduce a self-consistent
representation of a complex knot in terms of an ‘‘effective’’
lattice of obstacles. The polymer trajectory on this lattice is
represented by a primitive path which is measured in units of
the lattice constant~this makes the topological invariant in-
dependent of lattice deformation!. Maximal inflation is
equivalent to lattice enlargement up to the point in which the
polymer chain becomes completely stretched along the
primitive path and, therefore,p can be interpreted as the
chain length measured in units of the expanded lattice con-
stant. The above analogy allows one to estimate the number
of topologically different knots with a givenp value. Since a
lattice of obstacles can be mapped onto the Cayley tree@15#,
this quantity should grow exponentially withp:

K~p!;elp, ~4!

where l is some numerical constant, generally of order
unity.

We proceed to estimate the polymer chain size depen-
dence on solvent quality and topology, the latter represented
by the topological invariantp. Following the classical Flory
approach, the equilibrium polymer size is given by the bal-
ance of rubberlike elasticity and interactions between mono-
mers dispersed in the polymer volume. This is described by
the minimization of the free energy,

F5Felast1Finteract . ~5!

The interaction term for the ring is identical to that of the
linear chain,

Finteract

T
.
BN2

R3 1
CN3

R6 .
B

a3
N1/2

a3 1
C

a6
1

a6 , ~6!

whereR is the actual size of the polymer,a5R/aAN is the
linear swelling~or collapse if less than unity! factor,B and
C are the second and the third virial coefficients, respec-
tively, anda is the monomer size.

The problem is to obtain a plausible estimate for the en-
tropic part which would account for the frozen topology of
the polymer ring. To this end we suggest the following ap-
proximation based on the construction of the maximally in-
flated tube which occupies a volume of orderLD2. Let us
deform it affinely so that it occupies the volume of the chain
R3, but preserves the geometrical shape that it has in the

FIG. 1. Illustration of the tube inflation procedure. Two different
yet topologically equivalent loop conformations are shown. The
thin tube centered around the polymer closely resembles the con-
formation of the polymer itself. When the tube is inflated, with the
contour length of its axis preserved, all the small scale ‘‘jigglings’’
of the polymer conformation get gradually eliminated, and finally
we arrive at the maximally inflated shape that is independent of the
initial conformation, but only on the knot topology.
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maximally inflated state, and call this deformed tube
‘‘ R-size tube.’’ LetLR andDR be the length and the diam-
eter of theR-size tube, respectively. Since theR-size tube is
obtained by an affine transformation of the maximally in-
flated tube, we haveLR /DR5p, and since it occupies the
whole volume of the polymer,LRDR

25R3. We obtain

LR.Rp2/3, DR.Rp21/3. ~7!

The main assumption of this work is that in order to esti-
mate the entropic~i.e., elastic! free energy, we consider our
polymer as a phantom chain, but confined within theR-size
tube. The entropy of a phantom polymer confined in a tube is
independent of the way this tube is embedded in 3D space;
one can estimate the entropy of a phantom polymer in a
simple torus-shaped tube, or even that of a linear polymer in
a straight tube, with polymer ends attached to the tube ends.
This gives

Felast

T
.

LR
2

Na2
1
Na2

DR
2 5a2p4/31a22p2/3, ~8!

where the first and the second terms describe chain elonga-
tion along the tube and squeezing within the tube diameter,
respectively~see, for example,@16#!. We balance the free
energy contributions~6! and ~8! and obtain the following
equation fora:

a5p4/32ap2/32
B

a3
AN2

C

a6
1

a3 50. ~9!

This equation is the central result of our work. It is similar to
the equation@see @16#, Eq. ~13.5!# for linear or phantom
polymer, except for the inclusion ofp-dependent factors. Re-
call that the terms in Eq.~9! describe chain elongation along
the tube, chain compression across the tube, and two- and
three-body interactions, respectively. Guided by consider-
ations of simplicity, in the following we will describe our
results in terms of polymer chain sizeR5aaAN and take
B.a3t andC.a6, wheret denotes the dimensionless de-
viation from theu temperature. Inspection of Eq.~9! reveals
the following regimes.

~i! Good solvent regimeis realized whent.Ap/N; in this
regime entropic elasticity associated with chain elongation
along the tube@first term in Eq. ~9!# competes with two-
body-repulsion~third term!, yielding

R;aN3/5t1/5p24/15. ~10!

The N and temperature dependence of polymer size
(R;N3/5) is identical to the linear or phantom polymer case,
but there is an important prefactor that gets smaller for com-
plex knots with largep values. Note that the chain size in
this regime can be smaller than the size of a Gaussian phan-
tom chain, aAN; this happens in the rangep1/2N21/2

,t,p4/3N21/2, or, in other words, for sufficiently complex
knots with p.(tAN)3/4. Only a relatively simple knot in a
truly good solvent@p,(tAN)3/4# is swollen compared to the
Gaussian phantom size. At smallert or higherp ~more com-
plex knot! the polymer crosses over to the quasi-Gaussian
regime.

~ii ! Quasi-Gaussian regime is realized when
2Ap/N,t,Ap/N; in this regime elasticity associated with
chain elongation along the tube competes with three-body
repulsion and chain elasticity across the tube, the latter two
being of the same order of magnitude. This gives

R;aN1/2p21/6, ~11!

i.e., the N dependence of the chain size remains of the
Gaussian type, but the coefficient gets smaller for more com-
plex knots.

At even smaller~more negative! t or for smallerp ~sim-
pler knots! the polymer crosses over to the poor solvent re-
gime.

~iii ! Poor solvent regimeis realized whent,2Ap/N; in
this regime the two-body attractive term in Eq.~9! competes
with three-body repulsion, yielding

R.autu21/3N1/3F11utu24/3S pND 2/3G . ~12!

The main term here is an obvious result, because in the pres-
ence of strong intermonomer attraction the polymer must
collapse into a dense sphere~globule! with N-independent
density. We included the correction due to the next most
important term, which is chain compression in the tube. This
indicates that a heavily knotted globule is less compact com-
pared to its phantom counterpart.

~iv! Maximally tightened knot regimeis realized when
p;N and, interestingly, it does not depend on solvent qual-
ity and interactions. In this regime,

R.aN1/3, ~13!

and, thus, a tightly knotted ring is always compact.
The free energyFelast ~8! can be related to the probability

distribution of the knots that form in the process of formation
a ring by random contacts between the ends of a linear poly-
mer ~assuming that the ends remain glued upon contact!. An
identical distribution is obtained from the collection of the
instantaneous configurations of a phantom~freely passing
through itself! ring whose overall sizeR is maintained by
either monomer interactions~solvent! or an external field
~e.g., a box!. Indeed,Felast is determined by the volume in
configuration space which is available to the nonphantom
polymer with a given quenched knot topology, and this vol-
ume is obviously proportional to the probability to get this
same knot topology in a phantom system that goes freely
from one topology to the other. Thus, the probability to ob-
tain a knot with givenp value can be written as

P~p!;K~p!exp@2Felast/T#;exp@lp2a2p4/32a22p2/3#,
~14!

where we have used estimate~4! for the numberK(p) of
different knots with a givenp.

Inspection of Eq.~14! indicates that for swollen polymers
(a.1, R.aAN) trivial or simple knots withp;1 are the
most probable, while for collapsed polymers (a,1) the
probability distribution~if l.4A2/3'1.9) is peaked at

poptimal~R!;a26;N~Na3/R3!2. ~15!

6620 54GROSBERG, FEIGEL, AND RABIN



Thus, the most likely degree of knotting grows with chain
compression and reaches its maximal valuep;N for a maxi-
mally compact globule withR;aN1/3.

The intuitive expectation that topological constraints sup-
press both swelling in a good solvent and collapse in a poor
solvent, is in perfect agreement with our conclusions. Indeed,
our results confirm that when chain topology is frozen before
changing the quality of a solvent, a knotted polymer appears
underswollen in a good solvent and overswollen in a poor
solvent~compared to an unknotted one!.

Our results for the scaling exponents,~10,11!, agree with
computational data of Ref.@17#, where ring sizes,R(K),
were studied for several different ring topologiesK, includ-
ing unknot, trefoil, figure eight, and double trefoil. It was
found that critical indicesn(K) in R(K);Nn(K) are the same
~within statistical errors! for all tested knotsK, namely, close
to 0.6 or to 0.5 for rings with or without excluded volume,
respectively.

The simplest theory presented above does not distinguish
between a trivial knot (p51) and a phantom ring. In reality,
entropy loss is caused by exclusion of knotted conformations
even for a trivial knot ring. We expect that a trivial nonphan-
tom knot, when collapsed, has the shape of a crumpled glob-
ule @18#, whose fractal properties differ from those of a phan-
tom globule. To improve the theory, we consider
confinement in theR-size tube of a nonphantom unknotted
polymer instead of a phantom one; exclusion of knotting for
a chain confined within anR-size tube gives rise to an addi-
tional term in the elastic free energy~8! that scales asa26.
Indeed, expression~8! has to be modified in the case when
the chain is compressed both across and along the tube; in
the latter case, the scaling form of free energy can be ob-
tained from the fact that the resulting osmotic pressure must
depend onN and tube volumeLRDR

2;R3 only through the
polymer density,N/R3. This leads only to the redefinition of
theC/a6 coefficient in Eq.~9! and does not affect the scaling
forms of all our main results~10!–~13!, ~15!. More subtle
corrections may be needed if one is to incorporate delicate
properties of the collapsed state@19#, with the fractal dimen-
sion of the polymer backbone itermediate between 3, dic-
tated by the scale-invariant segregation of crumples in the

crumpled globule model@18#, and 2, which corresponds to
the a self-entangled globule which obeys the Gaussian statis-
tics of a melt.

Despite its simplicity, our theory gives rise to the follow-
ing unexpected result. Let us return once again to the good
solvent regime and examine the possibility of an uneven dis-
tribution of knots along a chain with a given value ofp.
Suppose that the chain adopts a conformation in which a part
of length of aboutp monomers forms a dense region where
all of the knots are located, and another part ofN2p mono-
mers which swells freely in the good solvent. As long as
p!N, our theory gives for this ‘‘phase segregated’’ state a
free energy of aboutp for the ‘‘collapsed’’ knotted part plus
about (N2p)1/5'N1/5 for the freely swollen loop part, yield-
ing aboutN1/5 on total ~assumingp!N1/5). On the other
hand, a state with a uniform distribution of knots gives, after
substitution of Eq.~10! into Eqs.~6! and~8!, a much higher
free energy, of orderN1/5p4/5 (p@1). Thus, while for
N1/5!p!N, thermodynamics favors a uniform distribution
of knots along the chain contour, our theory predicts that
segregation of knots will take place for less knotted chains,
with p!N1/5. This prediction can be tested by computer
simulations and experiments.

A preliminary version of this work has been published in
Ref. @20#.

Note added in proof.When this paper was under consid-
eration in the journal, we learned of the work@21# where the
same topological invariantp has been implemented in com-
puter experiments. The values ofp were computed for sev-
eral knots, and certain justification was obtained for the idea
that fluctuations of the polymer are dominated by conforma-
tions centered around the axis of theR-size tube.
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